

Multithreaded Client Server
Chat Application
Implementation

USING JAVA MULTITHREADING

August 02 ,2017

Advance Concurrent Programming

Spring 2017

Student# 201692544

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

2

PROJECT REPORT ENGI 9869 SPRING 2017

Abstract

In this project, A Multithreaded Client-Server Architecture based application is

implemented which works like a group chat room. Since Java has a most dominant

impact on Network Programming timeline and this application problem inherently

come up with network involvement plus concurrency and synchronization in

parallel operations of clients. Java is also good in multithreading solutions. So, Java

platform will be used in the development of this project and all the sources will be

tested and build using JDK later JVM. The server will run continuously receiving

requests from connecting clients and grant access to chat group using Java Socket

Programming Primitives. Parallelism in Java is no doubt excellent we can take

advantage of multithreaded parallelism but host machines may differ in different

situations so the code must be optimized generally for all machines. One of the big

challenges is using socket programming granularity of synchronization point will

increases as compared to interface programming of Java but it is good to catch up

those synchronization granularities for more optimized application development.

The server has its backlog as a bottleneck to respond limited set of clients at a time.

We are going to scale it to a larger number of users in future. Security is a big

challenge for intrusion detection and prevention in chat room

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

3

PROJECT REPORT ENGI 9869 SPRING 2017

Summary

Numerous chat applications are available online at stores and we just install them

and start using them but what programming paradigm they are using in these

applications is a question. It is not much known to all. Similarly, web recourses and

network properties, policies and protocols how they work? This all stuff will be

covered in this project once we understand this client-server model of operation in

the multithreaded environment then we simply be sure to get a glimpse of all

operational application around us for chatting, web surfing etc. and justifying why

Java parallelism is not worthless in this project. An “Advanced Concurrent

Programming” course is a big motivation to me for doing this project also Java

concurrency and synchronization is a great source to learn practical

implementations of concurrent application. I have implemented echo and daytime

servers as sequential processing applications but this is now a challenge and an

interesting thing to get some hands on abstract parallelism and concurrency features

of Java. We start with introducing the background of concurrent programming and

Java threads then we start the design of our application and end up with a suggested

algorithm which is used in the development phase of our application. After

development implementation is done on using Java language socket and internet

libraries. Finally, we launch the application on the host machine and at then end we

will discuss some important aspects of the application for future proceedings.

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

4

PROJECT REPORT ENGI 9869 SPRING 2017

Table of Contents

Abstract .. 2

Summary .. 3

Table of Contents.. 4

1. Introduction... 5

 1.1 Background ... 5

 1.2 Problem Statement .. 6

 1.3 Abstract View ... 6

2. Application Design .. 7

 2.1 Programming Paradigm ... 7

 2.2 Suggested Algorithm .. 8

 2.3 Programming Granularity ... 9

3. Application Development Primitives .. 10

 3.1 Creating Threads in Java ... 10

 3.2 Measuring Turnaround Time of Thread .. 11

 3.3 Concurrent Execution of Threads with Time Slicing .. 12

4. Implementation of Sockets ... 13

 4.1 Creating Sockets ... 13

 4.2 Creating Input/output Streams ... 14

 4.3 Closing Sockets... 15

5. Execution Documentation .. 16

 5.1 Host Machine ... 16

 5.2 Launching Application ... 16

 5.3 Running Examples .. 17

 5.4 Closing Application ... 18

6. Conslusion and Suggestions ... 19

References... 20

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

5

PROJECT REPORT ENGI 9869 SPRING 2017

Introduction

1.1. Background

Concurrent programming is among advanced structural programming

technique where a number of operations executed in same time elapse. These

operations are literally called Threads as the name implies these execution

flows are much lighter than heavy context programs/processes containing

process control blocks and multiple branches. Sequential programs which

execute in a single stream of operations one thread o control whereas

concurrent processes have more than one threads of control. Concurrent

programming applicability is a factor of dependent architecture and how much

resources will be utilized by the programmer. In short concurrent programming

is used to exploit resources of a single processor and perform a number of tasks

on a single processor using time slicing.

Java

It is a programming language. it was firstly released by Sun Microsystems

in 1995. Java is dominating in many applications and many programming

concerns. There are many examples/ applications where proper functioning

is purely dependent on Java including network, graphics, cluster computing,

cell phones, the Internet and object-oriented paradigm. It is a fast and

reliable. It is free to download and experience.

Thread

The thread is a lightweight process characterized by execution state,

execution stack and its local variables whereas the process is a unit of

activity characterized by system resources and current state. Threads are

faster. Initiation of threads is faster than process and similarly termination

too. Thread switching is faster that process switching. Threads of the same

parent process communicate with each other without the interference of

kernel. When a process run it assumes all of the systems resources

accessibility but thread always bounded in same address space of its

program and its own only process resources. Threads use to do background

work, for example, login window, image request on the web, updating

screen, and multiple audio plays etc.

Synchronizing threads in java

Concurrent programming as the name implies execution of many operations

interleave and parallel flows of controls are determined during execution.

When there are as many resources as execution context needed and there is

no dependency between concurrent operations then there is no need for

synchronization. In contrast, when the system has limited set of resources

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

6

PROJECT REPORT ENGI 9869 SPRING 2017

and interaction among operations is needed then synchronization should be

applied. In this case, threads will execute parallel and its main parameter of

concurrent programming paradigm. This is a trouble for programmers to

harness the capability of concurrent program avoiding the interference of

operation. This is done by some synchronization primitives of concurrent

programming including Locks, Barriers, Semaphores, Shared variables,

Rendezvous etc. Critical section can’t be done parallel by a number of

threads at a single time. Critical section problem arrives when shared

resources are vulnerable by unnecessary usage or usage at the wrong state

of program reading writing shared variables). Synchronization tells that

thread must be suspended or delayed waiting for other thread to leave the

critical section.

1.2. Problem Statement

A chat room application in which each user first enters by giving his/her name

and start sharing textual messages with all other users available in the chat

room. The user can see all the messages with the sender names (given on the

start entrance into chat room) with a current receiving time of the message.

When anybody leaves the chat room a message to all current chat applicants

available in the chat room able to see that corresponding user left. Every

message from the user contains it’s receiving time as well. Here application is

to be implemented like a multithreaded two-way communication program with

necessary synchronization among the threads.

1.3. Resolution Abstract

• One Server running all the time (High Availability) is required to run

the application.

• 10’s of the client at a single time taking an impression of dedicated

server response (Enforcing Concurrency).

• Synchronization solutions to multiple clients i.e. each thread Optimum

response speed to the client (less response time).

• Observer Pattern to Spread content received from one client to all

others.

• Implementation host will be Intel(R) Core (TM) i7, 6700 HQ CPU @ 2

x 2.6 GHz

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

7

PROJECT REPORT ENGI 9869 SPRING 2017

Figure-1: n-Clients Requesting for service

Application Design

2.1 Programming Paradigm

Client-Server Paradigm is used. But the need of this paradigm becomes more

interesting when we use java multithreading feature came into action which

gives an explicit implementation of threads creation and control

synchronization. See Figure-1

In response to every client server creates a new thread and allow all reads and

writes of that client via that thread and implement an observer pattern by

receiving requests from the client and throwing a message to all the client

threads currently running in on the server. See Figure-2.

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

8

PROJECT REPORT ENGI 9869 SPRING 2017

Figure 2: Client request is serviced by server using separate thread for

each client

2.2 Suggested Algorithm

Algorithm for implementing this chat application based on client-server model

is

Server

Begin

 Initiate server process listening for requests for all time

 Receive request

 Create a thread for client

 Create Socket connection with client thread

 While Comm. Not Ends

Do input/output streams

 Close streams

 Close socket

 Kill thread

 End

Client

Begin

 Initiate client process

 Create a thread for making request

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

9

PROJECT REPORT ENGI 9869 SPRING 2017

Make Request

 Create client thread for Data Transfer

 While Comm. Not Ends

Do input/output streams

 Close streams

 Close socket

 Kill thread

 End

2.3 Programming Granularity

Programming solution is given at the deeper level of implementation with

sockets and input-output streams of communication available in Java. Higher

levels of programming abstraction are also available like interfaces of Java but

implementing this problem with java network sockets will give lower level

control over synchronization. Sockets are complex data structures. Input and

output streams are also used in this solution which creates data forwarding and

receiving capability on two-way connections of sockets. Internet address which

is an internetworking protocol (IP) and port number both necessary to establish

a connection to the internet using sockets.

Machine_id is the machine internetworking protocol of host name that is used

to access relative IP.

Port_No is identification number of specific application.

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

10

PROJECT REPORT ENGI 9869 SPRING 2017

Application Development Primitives

Java is the best candidate for development platform of the network application.

Java.net is a package in Java development platform which contains Internet

Address resolutions, sockets with TCP and UDP connections.

Here we used TCP protocol which is connection oriented protocol implied that

communication connection must be established between client and server

before start sending or receiving data from client to server or server to client.

3.1 Creating Threads in Java

3.1.1 Using Thread Class

public class RunACPThread

{

public static void main(String args[])

{

ACP_Thread my_thread=new ACP_Thread();

my_thread.start();

}

}

class ACP_Thread extends Thread

{

void run() //start() method will invoke this run () method

{

System.out.println("Hello ACP Thread is Created");

}

}

3.1.2 Object Oriented Design of Thread Creation

Public class RunThreadExtended_SameClass extends Thread

{

public static void main(String args[])

{

 new RunThreadExtended_SameClass().start();

 }

void run()

{

System.out.println("Hello from ThreadExtended thread\007");

}

}

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

11

PROJECT REPORT ENGI 9869 SPRING 2017

3.1.3 Using Runnable Interface

class ACPThreadRunnable implements Runnable

{

// Produce Beep on every thread execution

void run()

{

System.out.println("Hello ACP Thread is Created\007");

}

}

public class RunACPThread

{

public static void main(String args[])

{

Thread x= new Thread(new ACPThreadRunnable());

x.start();

}

}

3.1.4 Object Oriented Design of Thread Creation

class RunACPThread_SameClass implements Runnable

{

public static void main(String args[])

{

Thread x= new Thread(new ACPThreadRunnable());

x.start();

}

// Produce Beep on every thread execution

public void run()

{

System.out.println("Hello ACP Thread is Created\007");

}

}

3.2 Measuring Turnaround Time

class RunThreadImplementedUsingConstructor implements Runnable

{

Thread myThread;

public void run()

{

System.out.println("Hello ACP Thread is Created using Constructor of

RunThreadImplementedUsingConstructor Class\007"); // Produce

Beep on every thread execution

}

RunThreadImplementedUsingConstructor()

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

12

PROJECT REPORT ENGI 9869 SPRING 2017

{

long millis1 = System.currentTimeMillis();

System.out.println("Time Before Thread " + millis1);

myThread =new Thread(this);

myThread.start();

long millis2 = System.currentTimeMillis();

System.out.println("Time After Thread " + millis2);

long t= millis2-millis1;

System.out.println("\nDifference " + t);

}

public static void main (String args[])

{

//Creating thread with a constructor

new RunThreadImplementedUsingConstructor();

}

}

3.3 Concurrent Execution of Threads with Time Slicing

public class ParallelThreads extends Thread

{

String Name= null;

ParallelThreads(String message)

{

Name= message;

}

public void run()

{

while(true)

{

System.out.println(Name);

}

}

public static void main(String args[])

{

ParallelThreads x=new ParallelThreads("Thread1");

ParallelThreads y=new ParallelThreads("Thread2");

x.start();

y.start();

}

}

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

13

PROJECT REPORT ENGI 9869 SPRING 2017

Implementing Sockets

Sockets are implemented on both server and client side of application for

communication. Sockets objects are used to create a connection between client

and server. TCP sockets are connection oriented sockets and our chat

application also required connection-oriented communication paradigm so we

use Socket and Server Socket objects for communication. Here is the

procedure for establishing a connection.

1. Create Network Connection

2. Opening Sockets

3. Creating Input/ Output Streams

4. Closing Sockets

4.1 Creating Sockets

The server must be listening on a specific port which is dedicated port and

cannot be used for any other network operation because the server must be able

to listen to requests all the time on the same port. Client call socket constructor

and pass parameters “Internet Address” and “Port number” on which server is

running. When the server receives a request from a client it sends back the

number after binding it with the client request. Giving the new port number to

the client means connections is established. So, at the same time server is

listening and writing back a response to the client. Communication is solely

dependent on sockets names client socket and server socket as depicted in

Figure-3.

4.1.1 Creating Client Socket

Client socket needs Internet Address of Server and Port number on

which server is listening to the requests. To open a client socket

following source will be implemented.

Socket ClientSideSocket;

try

{

ClientSideSocket= = new ClientSideSocket("Name/IP Address",

Port_No);

}

catch (IOException e) {

e.printStackTrace();

}

Figure 3 : Establishing Connection

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

14

PROJECT REPORT ENGI 9869 SPRING 2017

Try and catch blocks are guards in case of error/exceptions occurs

during establishing connection.

4.1.2 Creating Server Socket

Server socket needs to be implemented on the server. The server socket

is just for listening requests from the server on a dedicated port number.

The server will continue listening requests from a client on this port

number. Once requested is accepted server creates another socket for

establishing a complete connection. Process of creating server socket is

as below,

ServerSocket ServerListeningSocket;

try

{

ServerListeningSocket = ServerListeningSocket(Port_No);

}

catch (IOException e) {

e.printStackTrace();

}

4.2 Implementing Input/Output Streams

DataInputStream is used to receive data from another side over a layer of

sockets.

 DataInputStream receiving_data;

 try

{

reveiving_data= new

DataInputStream(ClientSideSocket.getInputStream());

}

 catch(IOException e)

{

 e.PrintStackTrace();

}

Dataoutputstream is used to send data over connection established on socket

and server socket.

 DataOnputStream sending_data;

 try

{

Sending_data_data= new

DataOutputStream(ClientSideSocket.getOutputStream());

}

 Catch(IOException e)

{

 e.printStackTrace();

}

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

15

PROJECT REPORT ENGI 9869 SPRING 2017

For sending data from server to client we can also use java PrintStream

primitive which implements methods like write and println.

4.3 Closing the sockets

When connection needs to be closed then sockets must be closed explicitly.

Input output streams must be closed before closing the socket. For closing the

socket just call close() methods of input/output and socket objects.

try

{

Sending_Data.close();

Receiving_Data.close();

ClientSideSocket.close();

}

catch (IOException e)

{

e.printStackTrace();

}

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

16

PROJECT REPORT ENGI 9869 SPRING 2017

Execution Documentation

5.1 Host Machine

This project is implemented on Intel(R) Core (TM) i7, 6700 HQ CPU @ 2 x

2.6 GHz machine. All running samples and performance measurements on the

same machine and may vary on other machines for the same application. Host

machine is used as a server and same time clients will generate requests from

this machine too so now we done with multiple command windows dedicated

each window to the distinct client and a separate window for Server program.

Internet Address of current machine is localhost. Which may be

169.254.x.x/16 which are default address when the machine is disconnected.

When it is connected localhost, the request will resolve the request for a

current internet address. Port Number we used here is 55555 which any

number between 1024-65535 on which this machine will accept the requests.

5.2 Running the Application

5.2.1 Launching Server Application

Open command window and go to the directory which contains server

file with .java extension and types the following command

 javac “Server_filename”.java

JDK will compile the file and if nothing will happen meaning that your

server file is successfully compiled. Now it is time to run the file

through JVM type following command in the same window

 java “Server_filename”

This time no extension will be used Because on a successful

compilation of file it will create Server_filename.class file which is free

to run using JVM and no need to give any extension.

5.2.2 Launching Client Application

Open command window and go to the directory which contains client

file with .java extension and does type the following command

 javac “Client_filename”.java

JDK will compile the file and if nothing will happen meaning that your

server file is successfully compiled. Now it is time to run the file

through JVM type following command in the same window

 java “Client_filename”

Same ways this time also no extension will be used Because on a

successful compilation of file it will create Server_filename.class file

which is free to run using JVM and no need to give any extension.

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

17

PROJECT REPORT ENGI 9869 SPRING 2017

5.3 Running Examples

Running server program will be as given in Figure-4 below,

Run Multiple clients by opening multiple windows of command prompt. Each

window contains prompt of corresponding client Figure-5 and Figure-6. Refer

to Figure-8 for analysis of java threads taking system resources with 4 clients .

Figure-4: Running Server on port 60000

Figure 5: Four Client Entering Chat Room

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

18

PROJECT REPORT ENGI 9869 SPRING 2017

5.4 Closing Application

To exit from chat group client must have to enter keyword “quit” and press

enter he/she will eventually get out of the chat room. See Figure-7.

Figure 6: Four Clients are Sending Messages in Chat Room

Figure-7: “acp_quit” will exit client from chat room. Here

Ahmed Left the Chat Room

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

19

PROJECT REPORT ENGI 9869 SPRING 2017

Conclusion and Suggestions

The application is limited to 10 clients only. No authentication for a user to enter

the chat room. Authentication is a more important measure for a chat application.

Here anyone who knows the public address and port number on which server is

listening able to access server and make the connection. It is easy to enter in the

chat room. Authentication threads can be used to authenticate the user before

entering the chat room. As you can see we have Multithreaded Client-Server

application with is only textual communications where no multimedia item can be

shared. In future, we can upgrade this application with Java web resources (file

sharing, searching media, tracing history etc.). The application can be enhanced to a

Graphical Interface also.

Figure 8: Analysis Current Java Threads with 4 Clients Running in Application

 M E M O R I A L U N I V E R S I T Y O F N E W F O U N D L A N D

20

PROJECT REPORT ENGI 9869 SPRING 2017

REFERENCES

Andrew, G. R. (n.d.). Foundation of Multithreaded Parallel and Distributed Networks.

Concurrent Programming. (n.d.). Retrieved from http://www.di.ase.md/~aursu/Concurrent_Programming_en.html

Goetz, B. (n.d.). JAVA Concurrency in Practice.

Java - Multithreading. (n.d.). Retrieved from https://www.tutorialspoint.com/java/java_multithreading.htm

Java SE Development Kit 8. (n.d.). Retrieved from http://www.oracle.com/technetwork/java/javase/downloads/jdk8-

downloads-2133151.html

Java Socket Programming Examples. (n.d.). Retrieved from http://cs.lmu.edu/~ray/notes/javanetexamples/

Java Tutorials. (n.d.). Retrieved from https://www.tutorialspoint.com/java/

LearnJavaOnline.org Interactive Java Tutorial. (n.d.). Retrieved from http://www.learnjavaonline.org/

